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Abstract

Nanodielectric materials, consisting of nanoparticle-filled polymers, have the potential
to become the dielectrics of the future. Although computational design approaches
have been proposed for optimizing microstructure, they need to be tailored to suit
the special features of nanodielectrics such as low volume fraction, local aggregation,
and irregularly shaped large clusters. Furthermore, key independent structural
features need to be identified as design variables. To represent the microstructure in
a physically meaningful way, we implement a descriptor-based characterization and
reconstruction algorithm and propose a new decomposition and reassembly strategy
to improve the reconstruction accuracy for microstructures with low volume fraction
and uneven distribution of aggregates. In addition, a touching cell splitting algorithm
is employed to handle irregularly shaped clusters. To identify key nanodielectric
material design variables, we propose a Structural Equation Modeling approach to
identify significant microstructure descriptors with the least dependency. The
method addresses descriptor redundancy in the existing approach and provides
insight into the underlying latent factors for categorizing microstructure. Four
descriptors, i.e., volume fraction, cluster size, nearest neighbor distance, and cluster
roundness, are identified as important based on the microstructure correlation
functions (CF) derived from images. The sufficiency of these four key descriptors is
validated through confirmation of the reconstructed images and simulated material
properties of the epoxy-nanosilica system. Among the four key descriptors, volume
fraction and cluster size are dominant in determining the dielectric constant and
dielectric loss.

Keywords: Nanodielectric, Material design, Descriptor identification, Microstructure
characterization and reconstruction, Structural Equation Modeling

Background
Dielectric materials are widely used in mobile electronics, electrical transmission, and

pulsed power applications [1]. There is an increasing demand for new nanodielectric

materials, consisting of nanoparticle-filled polymers, for creating future electrical

transmission and storage devices. One example is a new capacitor made from nanodi-

electrics that can store a large amount of energy and discharge it quickly with high-

energy density [2]. The design of nanodielectrics is often multi-objective, for example,

a tradeoff between dielectric constant and breakdown strength of dielectric materials
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has been observed [3]. It has been noted that small volume fractions of nanofillers can

significantly improve the composites’ dielectric breakdown strength because of their

high surface area/internal volume ratio [4]. To achieve design requirements under dif-

ferent application scenarios, a systematic computational design approach is needed to

quickly explore the microstructure design space of nanodielectrics. In this work, we are

developing characterization, reconstruction, and key microstructure feature identifica-

tion techniques to support the computational design of nanodielectric systems.

A traditional material design follows a trial-and-error process with the focus on ex-

ploring the relationships between processing conditions and material properties. This

empirical approach to material design is expensive and time consuming. In integrated

computational materials engineering (ICME), a three-link (i.e., processing-structure-

property) chain model that enables “microstructure-mediated design” has been pro-

posed to facilitate the design of new materials [5, 6]. The microstructure material de-

sign problem can be formulated as an optimization problem, in which the desired

material properties drive the design of microstructure first and then the corresponding

processing conditions. As pointed out by Xu et al, ICME faces three design-related

challenges: design representation, design evaluation, and design optimization [7]. Design

representation requires quantitative representation of the design space of heteroge-

neous microstructures using a small set of design variables. Design evaluation is the

process of assessing material properties for a given microstructure morphology, which

often involves finite element modeling (FEM) and simulations. Design optimization

searches for the optimal microstructure design to achieve the desired material proper-

ties. Using the design of nanodielectrics as a focal application, the main focus of this

paper is on developing methods to support design representation and identify key

microstructural design variables in material design.

A good design representation means an accurate quantitative description of micro-

structures that is easy to control from the perspective of simulation, design, and pro-

cessing. In the existing work, methods have been developed to characterize and

reconstruct microstructures for different material systems. They can be mainly classi-

fied into two categories: one is to use correlation functions (CFs) such as 2-point CF, 2-

point cluster CF, and surface correlation [8–11]; the other is to use physical descriptors,

such as volume fraction, particle size, and minimum distance between particles [12].

CF-based reconstruction often involves optimization procedures to minimize the error

between the actual CF and the target ones. This approach has been extended for recon-

structing multiphase microstructures, for which each phase has its own CF [13, 14]. Al-

though CF-based approaches are flexible and can be adapted for different microstructures,

it is computationally expensive and prohibitive for use as a part of the iterative material de-

sign procedure. In addition, CFs are infinitely dimensional. While coefficients of the func-

tions can be treated as design variables, they lack physical meaning. The descriptor-based

approach, on the other hand, is much more intuitive and offers low dimensionality of de-

sign variables with clear physical meaning. Toward this end, Xu et. al. [12, 15] proposed a

descriptor-based approach to fully characterize particle-based microstructures by introdu-

cing three categories of descriptors: (1) composition: e.g., volume fraction; (2) dispersion:

e.g., nearest center distance, interphase area, cluster number, local volume fraction, and

orientation; (3) geometry: e.g., cluster area, equivalent radius, aspect ratio, eccentricity,

roundness, compactness, tortuosity, pore size, and rectangularity.
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A descriptor-based approach is more efficient for generating statistically equivalent

microstructures than the CF-based approach and has been found effective for polymer

nanocomposites that have a relatively high volume fraction of filler (e.g., over 20 %)

[7, 12]. In this work, the nanodielectric system of interest has a few special features

(shown in Fig. 1):

� Low volume fraction and small number of clusters

� Uneven distribution of aggregates (heterogeneity)

� Irregularly shaped large clusters that cannot be modeled using simple geometries

like a sphere or ellipse (see Fig. 1c)

The volume fraction of the nanodielectric fillers ranges from 0.5 to 3 % over the sam-

ples available in our study (collected from several dielectric systems with similar poly-

mer dielectric permittivity). When the filler phase is on the nanoscale, small filler

loadings can result in significant property improvement because of the large interfacial

area. When the volume fraction is high, aggregation is harder to control and the prop-

erty enhancements are reduced. As a consequence, the distribution is heterogeneous

after processing, which is the reason why, as shown in Fig. 1c, local aggregates (marked

by circles) can be observed in these microstructures. In addition, the dispersion (ability

to separate primary particles) depends on the particle/particle and particle/polymer at-

traction [16]. The greater the particle/polymer enthalpic incompatibility, the greater the

driving force for agglomeration.

While the descriptor-based method is generally applicable for particle-based nanodi-

electrics, the original reconstruction algorithm requires the microstructures to be sim-

ple and the distribution of filler phase to be even, which is not always satisfied in low

volume fraction nanodielectric systems. Therefore, the existing descriptor-based

method needs to be tailored to suit the special features of nanodielectrics.

Material informatics [17, 18] is a growing area that exploits information technology

and data science to represent, manage, and analyze material data for accelerating new

material discovery and design. One of the common challenges associated with material

informatics is the high dimensionality of the data and the design space. Recently, efforts

have been made in microstructure dimensionality reduction via manifold learning [19]

and principal components [20]. However, dimension reduction based only on micro-

structures does not reflect the influence of microstructure on the properties of interest.

Fig. 1 a, b Sample microstructures (binary TEM images) of nanodielectric materials. 1430 × 1430 pixels,
physical size around 1 × 1 μm, red circles in (c) indicate examples of irregular clusters
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To address such limitations, our recent work applied a supervised learning algorithm

by using structural information from images and material properties from simulations

[21] as supervisory (response) signals. Even though the method can determine the rela-

tive importance of descriptors, it introduces subjectivity when determining the final set

of design variables. In addition, this learning method is not capable of discriminating

redundant features (descriptors); neither it is reliable for cases with a small number of

sample images.

In this work, we employ the descriptor-based characterization and reconstruction

method to the particular nanodielectric system of interest. To achieve more realistic

characterization and more accurate reconstruction, the existing algorithms are modified

considering the aforementioned special features of the nanodielectric system. To ad-

dress the issue of irregularly shaped large clusters, a touching cell splitting algorithm

[22] is incorporated to reproduce more realistic structures. To capture the unevenly

distributed aggregates, we propose a decomposition and reassembly strategy for recon-

struction that preserves local microstructural information. To overcome the limitations

of the existing machine learning approach, a Structural Equation Modeling [23] ap-

proach is proposed in this work to choose the proper set of independent descriptors

using the information learned from images. By introducing latent layers in mapping in-

put and output relations, we are able to identify the relationships and dependencies

among descriptors, which allow determination of a small set of key descriptors as de-

sign variables. Finally, we illustrate the obtained relationship between key microstruc-

tural descriptors and the dielectric properties to support design of a nanoscale silica/

epoxy matrix system.

Methods
Descriptor-based characterization and reconstruction

With various microscopic imaging techniques, such as scanning electron microscopy

[24] and transmission electron microscopy (TEM) [25], material microstructures can

be represented by grayscale digital images. Descriptor characterization is a process for

extracting statistical information about the structure descriptors from the images. Due

to the heterogeneity of these microstructures, statistical moments are often used as a

part of the descriptors. For instance, “cluster area” as a descriptor is best described by a

statistical distribution rather than a single value. To reduce dimensionality in represen-

tation, the first several orders of statistical moments, such as mean and variance are

often used rather than considering the whole distribution.

Once a microstructure is characterized by descriptors, a typical 2D or 3D reconstruc-

tion follows a sequential procedure [12]: (1) dispersion reconstruction: center positions

of clusters are adjusted to match dispersion descriptors, e.g., the nearest center dis-

tances, using optimization algorithms such as simulated annealing (SA), (2) geometry

reconstruction: the geometry is randomly generated for each cluster based on the geom-

etry descriptors and geometry profiles are assigned to each cluster, (3) composition

adjustment: the edge of clusters are modified to satisfy the composition descriptors

such as the volume fraction.

Because the primary particle size is small in this system, noise in the grayscale TEM

images is more likely to be recognized as particles in image processing. In this work,

we first employ Gaussian filtering [26] to remove the influence of noise. Gaussian
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filtering utilizes a Gaussian kernel to smooth the image, which will remove isolated

pixels. After the filtering process, the existing descriptor-based characterization and

reconstruction algorithm as described earlier is employed.

Touching cell splitting method

In the existing descriptor-based characterization [7], all connected regions are consid-

ered clusters and are approximated by ellipses. However, for the nanodielectric system

in our study, it is observed that the shapes of many connected regions are irregular,

which introduces inaccuracy when using a simple ellipse approximation as shown in

Fig. 2b.

To improve the characterization accuracy, a touching cell splitting algorithm [22] is

applied to split large irregular clusters. The algorithm uses polygon approximation and

ellipse fitting techniques to achieve the goal of separation. One simple example is

shown in Fig. 3b, where one large cluster is split into three ellipses. To achieve this, the

splitting algorithm follows three basic steps:

1) Polygon approximation of cluster edges

2) Identification of concave points and segmentation of cluster edges

3) Separation with ellipse fitting

A polygon approximation pre-process is first applied, to avoid the evaluation of con-

cavity of each point on the edge of aggregates. This first step is beneficial for reducing

the noise on the contour of aggregates as well as reducing the computational time,

which is proportional to the number of points to be evaluated. As shown in Fig. 3a,

after the polygon approximation using an octagon, the contour can be simply represented

by a sequence of points (marked by blue dots), and the concavity at each location can be

easily approximated by the angle difference between the neighbors:

a Ppre; Pc
� � ¼ tan−1 ypre−yc

� �
= xpre−xc
� �� �

;

a Pnext; Pcð Þ ¼ tan−1 ynext−ycð Þ= xnext−xcð Þð Þ
ð1Þ

Fig. 2 Illustration of different cluster shapes. a High VF polymer nanocomposite with ellipse-shaped filler
phase and (b) low VF nanodielectric system with irregular clusters
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concavity Pcð Þ ¼ a Ppre; Pc
� �

−a Pnext; Pcð Þ�� ��; if a Ppre;Pc
� ��� �� < π;

π a Ppre; Pc
� �

−a Pnext; Pcð Þ�� ��; else
�

ð2Þ

where Pc is the location to be evaluated and Ppre, Pnext are the neighbor points next to

it. Real concave points should satisfy the following rules:

1) concavity(Pc)∈ (a1, a2), and

2) Line PprePnext
should not cross over the inner region of the aggregates.

The first rule indicates that a proper threshold interval of concavity needs to be set

to select the candidates of real concave points. The choice of the interval varies for dif-

ferent material systems. Once the concave points are identified, the entire contour of

aggregates can be represented by several segments to fit ellipses. To represent the ellip-

ses, an implicit second order polynomial is utilized, i.e.:

F ¼ ax2 þ bxyþ cy2 þ dxþ eyþ f : ð3Þ

Reconstruction using decomposition and reassembly

To deal with microstructures with local aggregates that are unevenly distributed over

the whole image, we propose to first divide the image into subdomains and then re-

assemble small blocks of reconstructions to preserve local structural information. The

proposed method follows three steps (shown in Fig. 4):

1) Divide the original microstructure into multiple equal size sub-blocks

2) Apply the 2D descriptor characterization and reconstruction algorithm to each sub-block

3) Randomly assemble the sub-block reconstructions to obtain the fully reconstructed

microstructure

Our proposed method is inspired by the Morisita Index approach [27], which is used

to analyze local versus global dispersions. The Morisita Index divides the original image

using different sizes of small blocks, and then based on the number of particles in each

Fig. 3 a Basic idea of using polygon approximation for concavity calculation and b example splitting results
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block, a weighted index is calculated to represent the dispersion status of an image.

Here we need to choose an appropriate block size based on a specific problem, but the

basic idea is similar: let the sub-blocks keep the local information, which would be lost

if characterization and reconstruction were directly applied to the global region. The

size of the sub-blocks may influence the reconstruction accuracy. In this study, it is

found that when the block size is slightly larger than the largest clusters in the micro-

structure, satisfactory results can be obtained. A decomposition and reassembly strategy

was also employed in the evaluation of structure-property relationships and proved to be

effective [28]. One additional advantage of the proposed method is that in some sub-

blocks, there may be no particles. The block is then maintained as pure matrix (void

space) in the reconstruction to ease computation as well as to capture the void space fea-

ture which has been used in literature to quantitatively characterize material microstruc-

ture dispersion [29, 30] in low volume fraction systems.

Identification of key microstructure descriptors

The procedure of our proposed Structural Equation Modeling-based approach is shown

in Fig. 5. Structural Equation Modeling is a multivariate data analysis method that is

often used in social science for problems with latent layers and path structures [31].

Fig. 5 Flowchart of Structural Equation Modeling-based Machine Learning Method

Fig. 4 Flow chart of reconstruction by decomposition and random assembly of small blocks
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Considering that microstructures are measurements of structural characteristics, the

concept of a measurement model in Structural Equation Modeling can be applied. By

introducing latent layers (structural features) in mapping input and output relations,

we are able to identify the relationships and dependencies among different descriptors.

The whole procedure contains two main parts: First exploratory factor analysis (EFA)

[32] is used to reduce descriptors and group them where the latent factors are also

identified. Second, with the identified structure, the Partial Least Squares (PLS) tech-

nique [33] is applied to estimate the coefficients in Structural Equation Modeling. PLS

is shown to be advantageous for problems with a small number of samples and can

predict responses accurately [34–36]. In the first step, the original descriptors are

grouped under a few number of latent factors after using the EFA, and each latent fac-

tor relates to several descriptors (called indicators) that reflects the latent factor. The

extracted latent factors can be considered as categories of microstructure features, de-

scribed by descriptors, and the grouped structure reflects the correlation patterns of de-

scriptors. In the second step, response data such as microstructure CF or material

properties is added as the supervisory signal to identify the underlying descriptor-CF or

descriptor-property relationship, solved using the PLS algorithm

Two steps are shown: EFA and PLS-SEM. Responses can include both CF and prop-

erties. In contrast to our proposed approach described above, the existing machine

learning technique for identifying key microstructure descriptors pre-specifies the cat-

egories of microstructure features (e.g., composition, dispersion, geometry). Such classifi-

cation is experience-based and can become arbitrary as key microstructural features

may vary from one material system to another. In this work, exploratory factor analysis

is used to classify the descriptors into several groups by identifying the common factors

underlying the original data set. If the observed variables are X1, X2,…, Xn (microstruc-

tural descriptors such as minimum distance between fillers in the context of this work),

the common factors are F1, F2,…, Fm (latent microstructural features, e.g., dispersion

status), and the unique factors are U1,U2,…, Un (the part of X that cannot be explained

by F), the variables may be expressed as linear functions of the factors:

X1 ¼ λ11F1 þ λ12F2 þ…λ1mFm þ U1

X2 ¼ λ21F1 þ λ22F2 þ…þ λ2mFm þ U2:
⋮

Xn ¼ λn1F1 þ λn2F2 þ…þ λnmFm þ Un;

ð4Þ

Each of these equations is a regression equation; factor analysis seeks to find the coef-

ficients λij (loadings on factors) that best reproduce the observed variables from the fac-

tors. If all coefficients are correlations and factors are uncorrelated, then the sum of the

squared loadings for variable Xi, e.g.,
X
j

λ2ij , shows the proportion of the variance of Xi

explained by these factors. This is called the communality, and the larger the commu-

nality for each variable, the more successful the factor solution is.

The EFA helps us identify the common (latent) factors (F) that drive the variation of

descriptors (X). Each latent factor can be associated with a specific microstructural fea-

ture. For example, equivalent radius and pore size are different measures of the clusters’

sizes, where the cluster size can be considered a latent factor, and both equivalent
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radius and pore size are observed indicators. The EFA process is implemented with

three basic steps:

Step 1: Determine the number of latent factors (exogenous variables) n
Step 2: Conduct factor analysis with the n factors using proper rotation
Step 3: Identify exogenous variables that are poor indicators of latent factors

(uniqueness > 0.5) [32]

After identifying the proper structure model using EFA, a detailed Structural

Equation Modeling analysis follows where the general structure can be found in

Fig. 6. A detailed mathematical model of the presented structure is composed of

three key equations:

η m�1ð Þ ¼ B m�mð Þη m�1ð Þ þ Γ m�nð Þξ n�1ð Þ þ ζ m�1ð Þ; ð5Þ

y p�1ð Þ ¼ Λy p�mð Þη m�1ð Þ þ ε p�1ð Þ; ð6Þ

x q�1ð Þ ¼ Λx q�nð Þξ n�1ð Þ þ δ q�1ð Þ; ð7Þ

where m is the number of endogenous latent variables η, n is the number of exogenous

Fig. 6 Basic structure of Structural Equation Modeling. Circles represent latent variables, and squares
represent indicators that we can observe and measure
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latent variables ξ, and p and q are the number of indicators (x and y) and for endogen-

ous and exogenous variables, respectively. In our study, microstructure descriptors

(inputs) are the indicators of exogenous latent variables and microstructure CFs and

material properties (outputs) are the indicators of endogenous latent variables. Λy and

Λx are the loading coefficient matrix for indictors y and x, ζ is a structural error

vector, B is the relation matrix among endogenous variables η, and matrix Γ describes

the relations between endogenous variable η and exogenous variable ξ. ε and δ are

both measurement errors.

Equation (5) shows the mathematical relationship of the structural model, the rela-

tionship between latent variables, while Eqs. (6) and (7) both represent the measure-

ment model, illustrating the relationship between latent variables and corresponding

indicators.

In the context of material structure-property analysis, different categories of micro-

structure descriptors can be either pre-defined based on experience [12] or identified

as the exogenous latent variables ξi for microstructure descriptors in the proposed

Structural Equation Modeling structure after going through the EFA process. Latent

variables are often not directly measured. For instance, dispersion can be a latent vari-

able (exogenous variable ξi) but there is no explicit mathematical definition, while dis-

persion descriptors, such as nearest center distances and nearest boundary distances

[7], can be viewed as indicators, represented by x’s. Different indicators (microstructure

descriptors in this case) provide measurements of certain features of the microstruc-

ture. The error term, δi, in the general model can effectively take into account the er-

rors introduced by the approximations in measurement. Considering measurement

errors is another strength of the Structural Equation Modeling approach compared to

other methods. Rather than assuming the different categories of descriptors are inde-

pendent, the correlation between them can also be analyzed by studying the relation-

ship among latent factors in the Structural Equation model.

Depending on the data available, endogenous latent variables ηi at the output side are

related to material properties or statistical representations of microstructure (e.g., 2-

point CF) in this study. If the microstructure 2-point CF is treated as an exogenous la-

tent variable, then the indicators yi can be the L2 norm ‖S(r)‖2 of the 2-point CF [21]

and the fitting parameters of the CF. The Debye exponential fitting function [37] shown

in Eq. (8) is used in this work to represent the 2-point CF:

S rð Þ ¼ exp −
r
a

� �
ð8Þ

where a is a fitting parameter that describes the shape of CF.

The structural error ζi describes unmodeled factors that may influence the endogen-

ous variables ηi. If the exogenous variables ξi in the structured model cannot explain

the endogenous variables ηi well, then a large structural error ζ may exist in the final

model, which indicates that additional descriptors may need to be included.

Several different approaches are widely used to solve a structural equation. The first

is covariance-based Structural Equation Modeling [38]. The other approach is the Par-

tial Least Squares (PLS) algorithm [39], which is a soft modeling approach to Structural

Equation Modeling with no restriction on the normality of data [23]. The PLS algo-

rithm is especially effective for cases when a small number of samples are available [40]
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and is used in our study. The PLS algorithm estimates the coefficients of both measure-

ment and structural models by an iterative process. A brief diagram of the process is

shown in Fig. 7 and the whole PLS algorithm is implemented using the software

WarpPLS [41].

As a result of applying Structural Equation Modeling analysis, key microstruc-

ture descriptors are chosen as material design variables. Ideally, for each identi-

fied significant latent factor, we want to pick one descriptor as the best indicator

(or microstructural design variable). The choice of multiple descriptors within

one latent factor will lead to redundancy as multiple descriptors are often

correlated.

Constructing structure-property relationship for microstructure design

With the identified set of descriptors, the Optimal Latin Hypercube Sampling (OLHS)

[42] and the descriptor-based reconstruction algorithm can be used to generate a set of

sample microstructures over the microstructure design space. Corresponding property

data are obtained through finite element simulations and the descriptor-property model

can be constructed using metamodeling techniques such as Kriging [43]. Figure 8

Fig. 7 Diagram of PLS algorithm to solve structural equation modeling
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shows the general procedure to achieve optimal microstructure design using surrogate

descriptor-property models. The procedure has been demonstrated in nanocomposite

tire material design [12].

Nanodielectrics are widely used in energy storage applications, where the total energy

depends on both permittivity and breakdown strength. For the simple case consisting

of two parallel conductive plates separated by a dielectric with permittivity, ε, the total

energy is determined from the following equation

E ¼ 1
2
εAdU2

d ð9Þ

where ε is the dielectric constant, A and d are both geometric parameters of the capaci-

tor, and Ud is the breakdown strength of the dielectric material. In order to improve

the total energy storage, we need a high dielectric constant, ε, and high break down

strength Ud. The breakdown of dielectric materials is a dynamic process, which makes

it difficult to develop accurate simulation models.

In this study, we focus on the dielectric constant as the property of interest. For lossy

materials, the dielectric constant is a complex value, which follows the form:

ε ¼ ε0−jε00; ð10Þ

where the real part ε ' represents the ability for energy storage and the imaginary part,

ε ", denotes the energy loss of the material. Loss angle, tan δ, is often used to represent

the energy loss:

tanδ ¼ ε}

ε0
; ð10aÞ

which describes the ratio of energy loss to energy storage.

As a simple illustration of microstructure design of nanodielectrics, the design objec-

tives associated with the mechanical properties can be chosen as maximizing the real

part ε ' and minimizing the energy loss, tan δ. Previous work has shown that dielectric

permittivity in polymer nanocomposites can be analyzed using a Prony Series approach

adapted from viscoelasticity studies. This approach incorporates explicit consideration

of microstructure dispersion as well as polymer interphase between the nanofillers and

matrix into the Finite Element simulation [44]. Based on experimental results of bi-

modal brush grafted silica nanoparticles in an epoxy matrix, finite element modeling

Fig. 8 Procedure of nanodielectric material design
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has been used to accurately capture the dielectric permittivity and loss angle measured

in experiments by superposition of frequency-dependent dielectric relaxation constants.

Optimization of nanodielectric materials can be achieved following the framework de-

scribed in Fig. 8 once sufficient data are collected and multiple simulation property

models are built.

Results and discussion
Characterization and reconstruction

Characterization results of a sample nanodielectric microstructure using the original

descriptor-based approach without applying the splitting algorithm are presented in

Fig. 9a, where we find that approximating the two irregularly shaped clusters by sin-

gle ellipses introduces large errors. Figure 9b shows the result after using the pro-

posed splitting algorithm. Clusters smaller than the primary particle size are

considered to be a single ellipse. For this nanodielectric system, clusters with sizes

larger than two primary particles (15 nm particle diameter) are considered as candi-

dates for splitting.

As shown in Fig. 9b, the irregular clusters are each split into multiple ellipses, provid-

ing a better representation compared to the result in Fig. 9a where single ellipses are

used to represent the irregular clusters. As a confirmation of improved accuracy using

the splitting algorithm, we compare the interfacial area and the nearest center distance

using the two methods. The interfacial area (2D boundary between the filler and

matrix) in Fig. 9b is 0.0075 after using the splitting algorithm, which matches better

with the real surface fraction 0.0078 of the original image, compared to 0.006 of the re-

sult in Fig. 9a without using the splitting algorithm. A similar observation is made for

the characterized nearest center distance, which becomes 40 pixels after splitting versus

60 pixels before splitting. Nearest center distance reflects the local clustering behavior,

and the “true” value is unknown as the evaluation depends on the way the cluster is

characterized. The ellipse splitting algorithm implemented in this work is shown to be

effective for splitting touching clusters and offering more accurate characterization.

This splitting algorithm is utilized for all microstructure characterizations in the follow-

ing sections of this paper.

Fig. 9 Comparison between after using touching cell splitting and without. a Direct characterization using
ellipses (surface fraction = 0.006, nearest center distance = 60) and (b) characterization after ellipses splitting
(surface fraction = 0.0075, nearest center distance = 40)
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After applying the splitting algorithm, the following descriptors are used to characterize

the nanodielectric system for the subsequent reconstructions:

� Volume fraction (deterministic)

� Nearest center distance (mean and variance)

� Aspect ratio (mean, variance, normal distribution)

� Cluster area (mean, exponential)

Figure 10 shows two image samples chosen from the nanodielectric for recon-

struction. The microstructure in sample 1 has a few small local clusters and also

some large particle-free spaces with volume fraction at a level as low as 0.53 %.

Sample 2 has some large aggregates, which is a very common feature over the

samples collected. The physical size of the image is about 1 ×1 μ and the pixel

size is 2000 × 2000.

The statistical information characterized from the two original microstructures

is summarized in Table 1. It is observed that the nearest center distance (both

mean and variance) of sample 2 is much smaller than that of sample 1 (79 < 124),

which reflects the local aggregation behavior in sample 2. Since sample 1 does

not exhibit strong local aggregations, six reconstructions are generated (see

Fig. 11) using the original descriptor-based approach with the split algorithm but

without applying the proposed decomposition and reassembly strategy. For ease

of comparison, the resolution of reconstruction is set to be exactly the same as

the original, 2000 × 2000 pixels. While larger reconstruction windows always re-

sult in more accurate statistics than smaller ones, keep in mind that when the

size of reconstruction increases, the computational time increases dramatically,

especially for 3D reconstructions. Comparing the reconstructions of sample 1

with the original microstructure, we observe many similarities. First, the distribu-

tions of cluster sizes are identical; there are a small number of big clusters and

the majority are small clusters. Second, the local clusters are captured in the re-

constructions while some large particle-free spaces are observed.

Fig. 10 a Sample 1 microstructure, small clusters, and (b) sample 2 microstructure, large
local aggregations
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To evaluate the accuracy of reconstructions, the 2-point CF from reconstructions are

compared to the one from the original image. The relative error in L2 norm is used to

measure the deviation:

err ¼ S20 rð Þ−S2 rð Þk k2
S2 rð Þk k2

ð11Þ

where S2(r) is the target 2-point CF and S2 ' (r) is the 2-point CF of reconstruction.

The average error from six reconstructions is found to be 5 %, which is acceptable for

this low volume fraction material system.

For sample 2, with large local clusters, the proposed decomposition and reassembly

strategy using small blocks are implemented and compared using the original

descriptor-based approach with the split algorithm for the whole image. It is noted that

without applying the proposed decomposition and reassembly strategy, the two big

clusters shown in Fig. 10b are not captured by the reconstructed microstructure. Clus-

ters in the reconstruction shown in Fig. 12a are much more evenly dispersed than the

target image, even though a few big clusters do appear in reconstruction. The differ-

ence between the 2-point CF is large and the relative error calculated with Eq. (11) is

over 40 %. The result is not surprising because when the aggregates are not statistically

representative over the window size, e.g., an image with a very small number of large

aggregates, the reconstruction cannot reproduce the results. Figure 12b shows one re-

construction sample from using the proposed decomposition and reassembly algorithm

with 64 sub-blocks. Two large clusters and more particle-free spaces are observed in

the reconstruction, which is closer to the original microstructure compared to Fig. 12a.

Fig. 11 2-point CF comparison of reconstructions

Table 1 Descriptor information of the two sample microstructures (unit of length: nm)

Sample 1 Sample 2

Volume fraction 0.53 % 0.9 %

Nearest center distance 1st mean = 124, 1st var = 15,410 1st mean = 79, 1st var = 4151

Aspect ratio Mean = 0.7513, var = 0.0234 Mean = 0.9701, var = 0.0315

Cluster area Mean = 200 Mean = 10,120
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By comparing Fig. 12a, b, it is noted that the 2-point CF obtained using our proposed

decomposition and reassembly strategy matches much more closely than using the ori-

ginal algorithm, especially in the short range from r = 50 to 100. The relative error

achieved is 14.8 %, which is a big improvement compared to 48.6 % using the original

approach. The results show that the uneven local information is maintained through

the proposed strategy of using small blocks. It should be noted that when assembling

the small blocks, a totally random sequence is applied in our study. Omitting the rela-

tionship between the sub-blocks is acceptable here for two reasons: (1) The large clus-

ters are sparse in the microstructure images; therefore, it is difficult to come up with a

statistical characterization that is representative for the whole image. (2) For such a low

volume fraction system, it has been observed that the main differences among 2-point

CF occur in the short distance range, which has been captured by the information ob-

tained from individual small blocks. 2-point CF are usually oscillating with several

peaks and valleys. The location of the first deepest drop corresponds to the size of local

clusters and the peaks at longer distance relate to certain global periodical patterns. As

for this case study, no obvious long distance pattern can be observed, so it is not neces-

sary to consider the higher order block-block relationships. In real implementation, the

best results will be achieved by randomly assembling the small blocks multiple times

and choosing the best match for the target CF, to compensate for the lack of block-

block characterization.

Fig. 12 Reconstructions for microstructure with large clusters. a Reconstruction with original algorithm for
the whole window, err = 48.6 %; b reconstruction using proposed algorithm with sub-blocks, err = 14.8 %
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Identification of key descriptors from images using the Structural Equation Modeling

approach

In this paper, we illustrate the use of the Structural Equation Modeling approach based

on the information gathered from microstructure images only, where the CF are used

as supervisory responses, and the L2 norm ‖S(r)‖2 of the 2-point CF and the fitting pa-

rameters described in Eq. (8) are used as indicators. Image-driven analysis allows us to

keep the generality of the results (key descriptors), independent from the properties of

interest. If Structural Equation Modeling analysis is applied by using the property as re-

sponses, different material properties may result in different key structural features.

Since structure-property simulations are expensive, image-based Structural Equation

Modeling analysis for identifying key structure descriptors is recommended. To start

with, the full set of descriptors considered for particle-based microstructural systems

are first gathered from the literature related to hard or soft materials. They are

classified and marked under three categories: (1) composition, (2) dispersion, and

(3) geometry [21], in Table 2. The majority of the 29 descriptors are statistical, for which

two moments are used to represent the entire distributions. As training samples, 117 TEM

images of low volume fraction nanodielectric materials (0.5 % to 3 %) were collected.

The exploratory factor analysis (EFA) approach presented in the “Methods” section

and the associated three steps are first followed to identify the proper number of latent

factors and group the microstructure descriptors (indicators) based on their associa-

tions with the latent factors. When applying the EFA approach, only the data collected

on microstructure descriptors from 117 images is used. Methods for choosing the num-

ber of latent factors have been well studied and three widely used criteria, K1 method

Table 2 Descriptor set for statistical learning. Reference are provided for those descriptors without
explicit meaning

Descriptor Definition Type

Composition

VF Volume fraction Deterministic

Dispersion

ncd Cluster’s nearest surface distance Statistical

nbd Cluster’s nearest center distance Statistical

ornang Principle axis orientation angle [51] Statistical

intph Surface area of matrix phase Deterministic

N Cluster number Deterministic

Loc_VF Local VF of Voronoi cells [52] Statistical

Geometry

pores Pore sizes (inscribed circle’s radius) [53] Statistical

area Cluster area Statistical

rc Equivalent radius, rc ¼ ffiffiffiffiffiffiffiffi
A=π

p
Statistical

comp Compactness [54] Statistical

rnds Roundness [55] Statistical

eccen Eccentricity [55] Statistical

els Aspect ratio [56, 57] Statistical

rectan Rectangularity [55] Statistical

tsst Tortuosity [55] Statistical
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(eigenvalue) [45], Non-graphical Cattell’s Scree Test (optimal coordinates and acceler-

ation factor) [46], and Horn’s Parallel Analysis [47], are employed in Step 1 of EFA to

build confidence in the result.

Based on the results shown in Fig. 13, the number of microstructure latent factors is

determined to be 5 for our case study. Because the major purpose of the EFA is to

group descriptors, the cross loadings of descriptors on latent factors should be mini-

mized. Hence in Step 2 of EFA, the oblique Promax rotation method [48] is chosen to

adjust orthogonal factors so that the small loadings can be made closer to 0. With the

Promax rotation, we maximize the number of input variables (descriptors) that have

only one high loading on a specific latent factor. The EFA results are shown in Table 3.

The five latent factors (meanings explained in next paragraph) explain over 80 % of the

variances of the original descriptor set. The loadings of input descriptor variables on la-

tent factors can be found in the first five columns, and the largest loading in each row

is in italics. The last two columns show the uniqueness of input variables and the com-

plexity respectively. Uniqueness is measured by U2
i in Eq. (4), and small value of

uniqueness means factors explain input variables well. In the table, if we take a look at

the row of ornang1, all the loadings are very small and the uniqueness is 0.96, which is

very close to 1. Thus we can conclude that the variation of ornang1 is not well ex-

plained by these latent factors in our model. Complexity [49] measures the number of

relevant factors for each input variable. Higher complexity means the variable is rele-

vant to multiple factors and cannot be represented by a single factor.

In Step 3 of the EFA procedure, based on the rule that at least half of the variance of

an independent variable should be explained by a latent factor (uniqueness ≤0.5), we
can identify poor factor indicators (underlined) and withdraw them from our data set.

Going through steps 1 to 3 in EFA, we reduced the number of characterization parame-

ters from 29 to 19 and associate them to five latent factors. Examining the results, we

can relate each factor to a physical interpretation: Factor 1 represents the size of clus-

ters, with 6 descriptors as indicators: cluster area (area1, area2), pore size (pores1,

pores2), and equivalent radius (rc1, rc2). Factor 2 represents the distribution status,

Fig. 13 Identification of the number of microstructure latent factors. Parallel analysis and optimal
coordinates provide the same estimate of five latent factors. The factors marked by stars are kept as latent
factors, their eigenvalues are larger than those from parallel analysis and optimal coordinate estimation
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with the nearest neighbor distance such as nearest boundary distance (nbd) and nearest

center distance (ncd) as the indicator. Factor 3 describes the composition information,

including volume fraction (vf ), interfacial fraction (intph), number of clusters (n), and

local volume fraction (locvf1). Volume fraction clearly describes the composition, and

the other three describe higher order composition information. Factors 4 and 5 represent

two geometric characteristics: Factor 4 is associated with rectangularity (rctan1, rctan2), and

tortuosity (ttst2); Factor 5 is associated with compactness (comp1) and roundness (rnds1).

With the identified associations between microstructure descriptors and latent fac-

tors, and the three parameterized CF (2-point, 2-point surface, and linear path) as re-

sponses for supervised learning, a PLS algorithm is applied to identify the structural

Table 3 Results of EFA (loading, uniqueness, and complexity). The meaning of descriptors can be
found in Table 2. Indices 1 and 2 indicate the mean and variance of the corresponding descriptor,
respectively, e.g., area1 stands for the mean of clusters area

F1, cluster
size

F2,
distribution

F3,
composition

F4,
geometry1

F5,
geometry2

Uniqueness** Complexity

area1* 0.99 −0.03 −0.08 −0.04 −0.09 0.0066 1

area2 0.87 −0.02 0.19 −0.03 0.25 0.2016 1.3

comp1 0.05 −0.06 0.13 −0.01 0.92 0.1244 1.1

comp2 0.06 0.15 0.13 0.23 −0.28 0.7996 3.2

eccen1 0.08 −0.03 0.08 0.19 −0.43 0.7363 1.6

eccen2 0.09 0.24 0.12 −0.12 0.15 0.9222 3.3

els1 0.27 −0.01 0.13 0.24 −0.32 0.6794 3.2

els2 0.12 0.23 0.06 0.39 0.15 0.7368 2.3

locvf1 0.37 −0.02 0.57 −0.1 −0.22 0.397 2.1

locvf2 0.36 0.09 0.23 0.02 −0.14 0.7351 2.2

nbd1 0.11 0.69 −0.38 −0.01 0.23 0.0913 1.9

nbd2 −0.17 1.02 0.08 −0.03 −0.17 0.0544 1.1

ncd1 0.25 0.65 −0.38 −0.01 0.16 0.0949 2.1

ncd2 −0.13 1.01 0.08 −0.04 −0.18 0.0496 1.1

ornang1 −0.04 −0.09 −0.03 0.16 0.04 0.9673 2

ornang2 −0.03 −0.02 0.07 0.15 0.28 0.8921 1.7

pores1 0.92 −0.09 −0.35 −0.1 −0.02 0.2054 1.3

pores2 0.92 0.01 −0.04 0 0.06 0.1733 1

rc1 0.88 −0.01 −0.22 −0.06 −0.28 0.0704 1.4

rc2 0.97 −0.02 0.05 −0.01 0.11 0.0905 1

rctan1 −0.1 −0.03 −0.09 1 −0.04 0.0075 1

rctan2 −0.1 −0.05 −0.1 1 −0.04 0.015 1

rnds1 0.03 −0.06 −0.02 −0.1 0.75 0.4154 1.1

rnds2 0.21 0.01 0.06 0.21 0.25 0.8562 3.1

ttst1 0.05 −0.08 0.15 0.51 0.44 0.5319 2.2

ttst2 0.02 0.03 −0.09 0.85 −0.21 0.1797 1.2

intph0 −0.07 −0.02 0.94 −0.09 0.01 0.0992 1

n −0.37 0.03 0.91 −0.08 0.21 0.0726 1.5

vf 0.49 −0.03 0.74 −0.08 0.15 0.0977 1.8

*Highest descriptor loading in each row is made italic, and it indicates strong association between the descriptor and the
latent factor
**Uniquenesses larger than 0.5 are made italic and the corresponding descriptors are not considered in later analysis.
Large uniqueness means low association between descriptor and latent factor
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equation model, and the final results are visualized in Fig. 14. It is observed that Factor

4 has no significant influence on all three CFs. Factor 5 only has a weak impact

(−0.332) on the 2-point CF, but not on the other two CFs. The above indicates that the

cluster geometry information is not critical for the microstructures of the nanodielec-

tric system in this study. Factors 1 (size of clusters) and 3 (composition) have signifi-

cant influence on CFs (large coefficients such as 0.893, 0.763 and P value <0.001).

Influence from Factor 2 (distribution status) mainly goes toward the surface CF (corrs),

with 0.767 as the coefficient. In addition, the R-squared for all three responses are very

high (average over 0.8), indicating the latent factors in this model explain well the vari-

ation of responses (CF).

The obtained Structural Equation Model is verified based on the physical mean-

ing of factor coefficients. For example, Factor 1 represents the size of clusters and

it is meaningful that it has a negative effect (−0.542) on the surface correlation

and a strong positive effect (0.893) on the lineal path correlation. Intuitively, a lar-

ger cluster size leads to smaller surface area and larger lineal path. Based on the

Fig. 14 Structural Model based on supervised learning using microstructure CF. Significant relationships are
shown by solid lines and corresponding coefficients are marked by “*”. “corrf” = 2-point CF, “corrs” = 2-point
surface CF, “corrl” = lineal path CF
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Structural Equation Model analysis, a potential set of material design variables are

chosen by including four descriptor variables, each underlines Factor 1, Factor 2,

Factor 3, and Factor 5, respectively. Based on the loadings of each descriptor with

respect to each latent factor, the most significant set is identified to be area1

(0.995, average cluster area) for Factor 1, ncd1 (0.959, average nearest center dis-

tance) for Factor 2, vf (0.943, volume fraction) for Factor 3, and rnds1 (0.898, aver-

age cluster roundness) for Factor 5.

The Structural Equation Model approach provides a clear association of descriptors

and factors that are identified to minimize dependency through factor analysis. In

contrast, if we use the existing supervised ranking method based on the Relief algo-

rithm [21], we will run into several issues. The first problem is there is no subject-

ive criterion to determine how many descriptors to keep only with the ranking

information. Second, the redundancy issue among the top ranked descriptors can-

not be properly addressed. Specifically, the top four (4) ranked descriptors from the

Relief ranking algorithm based on the contribution of individual descriptors to

responses for the same test case is identified to be vf, area1, pores2, and rc2. A

follow-up check of the correlations among these three descriptors as shown in

Table 4 indicates strong correlations with the average above 0.9. From the Struc-

tural Equation Model analysis shown in Fig. 14, area1, rc2, and pores2 belong to the

same latent category (Factor 1) and their loading factors (0.995, 0.942, 0.986) are

very close to each other; therefore, choosing all three of them as key descriptors be-

comes redundant. Even though correlations among descriptors can be identified

first before applying the Relief algorithm, selecting what descriptors to keep for data

mining is still a problem [21]. Moreover, with the Relief ranking algorithm, it is very

likely that we withdraw important descriptors that have more significant influence

on the latent factors but are ranked relatively low in the whole list of descriptors.

The Structural Equation Model-based method does not have these issues because

highly correlated descriptors are reduced to a single latent factor in the EFA step

and the importance of each descriptor can be reflected by factor loadings, based on

which the key descriptors can be selected for each latent factor. The proposed

method hence provides much more insight into the data as well as helps to under-

stand and interpret complex relationships.

Table 4 Correlation comparison of chosen descriptors. Proposed and prior ranking algorithm, high
correlation among area1 (average cluster area), pores2 (variance of pore size), and rc2 (variance of
equivalent radius)

Structural Equation Modeling-based analysis vf area1 ncd1 rnds1

Vf—volume fraction

area1—average cluster area 0.46

ncd1—average nearest center distance −0.32 0.33

rnds1—average cluster roundness 0.08 −0.23 −0.10

Prior ranking algorithm [21] vf area1 pores2 rc2

Vf—volume fraction

area1—average cluster area 0.56

pores2—variance of pore size 0.43 0.90

rc2—variance of equivalent radius 0.54 0.93 0.91
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Validation using reconstruction and property simulations

To further validate that the four identified key descriptors retain the majority of the struc-

tural information, quantitative comparisons were made between the original 2D micro-

structure and reconstructions using identified key descriptors, through comparing CFs

and simulating the dielectric properties for the epoxy-silica system [4]. Eight representa-

tive microstructures are chosen for this validation, and three reconstructions are gener-

ated for each of the eight microstructures to account for reconstruction uncertainty. The

comparison of CFs are shown in Fig. 15 for two examples, where the four identified key

descriptors from the Structural Equation Modeling approach are used to reconstruct 2D

microstructures. It is observed that the CFs of reconstructions match well with those of

original microstructure. The property simulation results are shown in Table 5, and the dif-

ferences between reconstructions and the original images are measured by a relative error

in terms of the two interested dielectric properties. With an average error at level 0.44 %,

the identified descriptors are proven to be capable of capturing the key structural features

that affect the dielectric constant ε '. The average error of loss angle tan δ is 3.5 %, which

is acceptable considering reconstruction uncertainty and simulation errors.

We also compare the capabilities of predicting material properties using these two

different microstructural representations (the correlation function (CF)-based approach

and the key descriptor-based approach). A linear regression model is chosen for simpli-

city and the analysis is based on collected nanodielectric images and simulated proper-

ties. Model fitting results are presented in Table 6. It is observed that both models have

high prediction accuracy and the model using CF shows slightly better performance

in predicting both dielectric constant and loss angle, which is reasonable since the

key descriptors are identified based on CF. In conclusion, the identified four key de-

scriptors capture the structural information and provide satisfactory property predic-

tion accuracy.

The effects on material properties of each descriptor can be estimated from the stan-

dardized coefficients in the fitted linear regression model (shown in Table 5). It is

Fig. 15 CF of two reconstruction examples. Reconstructions match well with original microstructure in
terms of the tree chosen CF. Average relative error over all 8 samples: 2-point CF 2.9 %, lineal path CF
3.9 %, 2-point surface CF 5 %
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interesting that even through the image-based supervised learning based on the Struc-

tural Equation Modeling approach identifies the average nearest center distance, ncd1,

as one of the four key descriptors, the influence of ncd1 is not significant for both

properties in this case study. This can be explained by the fact that in the studied nano-

dielectric system, clusters are sparsely distributed, where the interactions between clus-

ters are very weak. In that case, the variation of the nearest distance will not strongly

affect material properties. The influence of average roundness, rnds1, on the two prop-

erties of interest is much smaller compared with that of average clusters area, area1,

and volume fraction, vf. Smaller cluster area and larger volume fraction lead to better

dielectric performance: higher energy storage capability (high ε ') and smaller dielectric

loss (small tan δ), which is visualized in Fig. 16. This observation is consistent with the

findings in the literature that systems with small particles have high surface area-to-

volume ratio, which is critical in determining the properties of nano-filled materials

[50]. In general cases, the structure-property (s-p) relationship can be more compli-

cated so that we may need to fit nonlinear models, such as Kriging meta-models. Our

ongoing work is focused on establishing processing-structure (p-s) relationship. Once

the whole processing-structure relationship is completed, we can link the p-s and s-p

relationships together to achieve optimal design of the material.

Conclusions
In this paper, new characterization, reconstruction, and key microstructure feature

identification techniques are developed to support the computational design of nanodi-

electric systems. For design representation, a descriptor-based characterization and

Table 6 Results of linear model fitting

Model CF (six parameters) Key descriptors (four) Standardized coefficients of descriptors

Prediction
error

R-squared Prediction
error

R-squared Average
cluster area

Volume
fraction

Average
nearest distance

Average
roundness

ε ' 5.53e−04 0.95 8.36e−04 0.93 −0.419a 1.060a 0.0008 0.096a

tan δ 1.12e−07 0.91 7.5e−08 0.88 0.614a −1.034a 0.0043 −0.048

Prediction errors are estimated by 10-fold cross validation; model for CF contain six variables; standardized coefficients of
the model using key descriptors are provided and significant ones are marked by “a”, at confidence level 0.95

Table 5 Comparison of dielectric properties of the original and reconstructed images. Eight
samples are chosen; properties are averaged over five reconstructions for each sample

Dielectric constant ε ' Loss angle tan δ

Original Reconstruction (average) Error (%) Original Reconstruction (average) Error (%)

1 4.215 4.204 0.254 0.0167 0.0161 3.50

2 4.084 4.084 0.016 0.0173 0.0164 4.74

3 3.926 3.941 0.384 0.0190 0.0185 2.78

4 3.897 3.903 0.168 0.0192 0.0190 0.92

5 4.109 4.173 1.546 0.0167 0.0158 5.36

6 3.910 3.920 0.253 0.0191 0.0188 1.59

7 3.962 3.971 0.212 0.0185 0.0181 2.14

8 3.981 4.009 0.709 0.0181 0.0175 3.24

Average 0.443 Average 3.50
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reconstruction method is employed and tailored for a low volume fraction nanodielec-

tric system with uneven local aggregations and irregularly shaped clusters. To handle

special microstructures with large local aggregates, we propose a new decomposition

and reassembly strategy, based on which the reconstruction accuracy is greatly im-

proved. We also incorporate a touching cell splitting algorithm into the descriptor-

based method to deal with irregularly shaped clusters to achieve more realistic

characterization. To simplify the material design process and minimize the redundancy

among design variables, a new Structural Equation Model-based method is developed

to identify key descriptors. To keep the results independent from the material properties

of interest, the analysis presented in this paper is based on information from the micro-

structure images (CF). According to the fitted Structural Equation Model, in which de-

scriptors are classified into five groups based on the identified latent factors, we find

volume fraction, cluster size, nearest center distance, and cluster roundness to be a suffi-

cient set of descriptors to represent the structural features of the very low volume fraction

nanodielectric system in this research. The relationship between the microstructure and

properties are explored based on the epoxy-silica system and a close to linear relationship

is observed between dielectric permittivity and the identified key descriptors.

In a future work, more image data of nanodielectric material systems with a wider

range of volume fraction will be collected and simulation models for predicting all im-

portant dielectric properties will be included. In addition, the design problem will be

extended to include both permittivity and breakdown strength as objectives. To make

the tradeoff between the two, the Pareto frontier will be used to first identify a set of

non-dominated (best achievable) optimal solutions. In addition, the Structural Equation

Model-based method can also be applied to find the relations between descriptors and

certain properties, which can then be directly used as predictive models in material de-

sign. Processing conditions will be taken into consideration to establish the mapping

relations across the chain of processing-structure-property to ensure the manufactur-

ability of new nanodielectric materials.

Availability of supporting data
Data presented in this work will be made available upon request.

Fig. 16 Structure-property relationship. Linear relationship between dielectric properties and key
descriptors, only volume fraction and cluster size are considered for visualization
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