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Abstract Developing process-structure relationships that

predict the impact of the filler-matrix interfacial thermody-

namics is crucial to nanocomposite design. This work

focuses on developing quantitative relationships between the

filler-matrix interfacial energy, the processing conditions,

and the nanoparticle dispersion in polymer nanocomposites.

We use a database of nanocomposites made of polypropy-

lene, polystyrene, and poly(methyl methacrylate) with three

different surface-modified silica nanoparticles under con-

trolled processing conditions. The silica surface was modi-

fied with three different monofunctional silanes:

octyldimethylmethoxysilane, chloropropyldimethylethoxysi-

lane, and aminopropyldimethylethoxysilane. Three

descriptors were used to establish the relationship between

interfacial energy, processing conditions, and final

nanoparticle dispersion. The ratio of the work of adhesion

between filler and polymer to the work of adhesion between

filler to filler (descriptor: WPF=WFF) and the mixing energy

for the production of the nanocomposites (descriptor: Ec)

are used to determine the final dispersion state of the

nanoparticles. The dispersion state is described using a

descriptor that characterizes the amount of interfacial area

from TEM images (descriptor: �Ifiller). In order to capture the
descriptors accurately, the TEM images of the nanocom-

posites are binarized using a pixel-wise neighbor-dependent

Niblack thresholding algorithm. The significance of the

microstructural descriptors was ranked using supervised

learning and the interfacial area emerged as the most sig-

nificant descriptor for describing the nanoparticle disper-

sion. Our results show a stronger dependence of the final

dispersion on the interfacial energy than the processing

conditions. Nevertheless, for the final dispersion state, both

descriptors have to be taken into account. We also introduce

a matrix-dependent term to establish a quantitatively non-

linear relationship between the processing and microstruc-

ture descriptors.

& L. Catherine Brinson

cbrinson@northwestern.edu

Irene Hassinger

irene@hassinger-ehlen.de

Xiaolin Li

xiaolinli2018@u.northwestern.edu

He Zhao

hezhao2012@u.northwestern.edu

Hongyi Xu

hongyixu2014@u.northwestern.edu

Yanhui Huang

huangy12@rpi.edu

Aditya Prasad

prasaa@rpi.edu

Linda Schadler

schadl@rpi.edu

Wei Chen

weichen@northwestern.edu

1 Department of Materials Science and Engineering,

Rensselaer Polytechnic Institute, 110 8th Street, Troy,

NY 12180, USA

2 Theoretical and Applied Mechanics Program, Northwestern

University, 2145 Sheridan Rd., Evanston, IL 60208, USA

3 Department of Mechanical Engineering, Northwestern

University, 2145 Sheridan Rd., Evanston, IL 60208, USA

4 Department of Materials Science and Engineering,

Northwestern University, 2220 Campus Drive, Evanston,

IL 60208, USA

123

J Mater Sci

DOI 10.1007/s10853-015-9698-1

http://crossmark.crossref.org/dialog/?doi=10.1007/s10853-015-9698-1&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10853-015-9698-1&amp;domain=pdf


Introduction

Even though many outstanding properties of polymer

nanocomposites (PNC) have been demonstrated in the lit-

erature [1–7], commercial use is often limited because the

processing is either expensive or difficult. One primary

challenge is in controlling nanoparticle dispersion, which is

often crucial for obtaining optimized properties [8–11].

Furthermore, tailoring the properties of nanocomposites is

typically a trial and error process because the development

of quantitative process-structure–property relationships is

limited [12–14]. For example, the interfacial energy mis-

match between the filler and matrix is often tailored, but a

quantitative relationship between interfacial energy and

processing parameters is not well developed. To obtain

efficient development of nanocomposites, a modeling

approach is needed that can incorporate the particle/surface

chemistry and the processing required to achieve a specific

nanofiller dispersion. With such a predictive model, the

number of iterations required using experimental explo-

ration can be reduced, and the design and optimization of

materials to achieve desired properties will be accelerated.

Prior work has demonstrated a quantitative relationship

between interfacial energy and dispersion under equilib-

rium conditions [15]. When the filler and the polymer are

thermodynamically compatible, the filler is well dispersed.

Agglomeration increases when the work of adhesion

between the fillers exceeds the work of adhesion between

the filler and the polymer [13]. The surface energy also

determines the mobility of the interphase, which is sig-

nificant for properties like glass transition temperature [15].

Most processing methods result in a kinetically trapped

microstructure that is not in equilibrium and thus it is

important to develop quantitative relationships to predict

dispersion under those conditions. An example of a non-

equilibrium processing method is extrusion. Extrusion is an

inexpensive, fast, and simple method to produce polymer

products [16] and it is the most important process in the

polymer industry [16, 17]. Therefore, extrusion processing

is analyzed in this paper. It is well known qualitatively that

to reduce the nanoparticle agglomerate size, the agglom-

erate cohesive strength must be overcome [14]. With

increasing shear energy input, the agglomerate size can be

further reduced [18]. The details of the dispersion process

are more complex. To deagglomerate nanoparticles in an

extruder and maintain particle separation, several processes

have to take place [14, 18–23]:

1. incorporation of the filler in the matrix,

2. wetting of the filler with matrix material,

3. infiltration of the matrix into the agglomerate,

4. breaking up of the agglomerates and erosion of

nanoparticles from the agglomerate surface,

5. distribution within the matrix, and

6. re-agglomeration due to particle collisions during

mixing.

These processes depend on nine factors:

a. surface energies of the components,

b. viscosity of the polymer,

c. packing density of the agglomerate,

d. chain stiffness of the polymer,

e. shear stress,

f. specific energy input during processing,

g. agglomerate size,

h. crystallinity, and

i. agglomerate strength.

The quantitative dependence of some of the listed pro-

cesses and factors has been studied in the literature and the

interdependencies are complex. For example, wetting of

the filler by the matrix (point 2) depends on the surface

energies (point a) and the polymer viscosity (point b).

Impregnation (point 3) of the filler agglomerates with

polymer melt depends on the porosity and the density of

the agglomerates (point c), the surface energy (point a), the

polymer structure (point d) [24], and the polymer viscosity

(point b) [14] [25–27]. The packing density (point c) of the

agglomerates not only influences the penetration time of

the matrix in the agglomerate (point 3), but also the

agglomerate strength (point i) [28–30]. Infiltration of the

agglomerate with polymer (point 3) increases the distance

between particles, which facilitates deagglomeration [12].

After infiltration, the particles have to be dispersed and

distributed to realize single primary nanoparticles. The

dispersion (point 4) process is mainly controlled by the

shear stress (point e) and processing energy (point f), which

increases with increasing polymer viscosity (point b).

Furthermore, the particle–matrix interaction (point a) plays

an important role during deagglomeration, because the

shear stress (point e) has to be transferred from the matrix

to the agglomerate [31].The initial agglomerate size (point

g) can also influence the final distribution: Larger

agglomerates are easier to distribute, but individual parti-

cles are clearly not well dispersed. Furthermore, for large

residence times, re-agglomeration (point 6) can occur [29].

In addition, during crystallization (point h) (only occurring

in semi-crystalline polymers), both agglomeration and

deagglomeration can occur (point 6) [32].

In this study, surface energy, polymer viscosity, shear

stress, and processing energy (point a, b, e, and f) are

studied. Although the other factors could have significant

impact on dispersion and distribution, their impact is not

considered because of either the limited number of com-

posites systems in this study (e.g., for studying the chain

stiffness and the crystallinity) or difficulty in gaining the
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needed information during the applied process (e.g., for

investigating the packing density and size of the

agglomerates).

In previous studies, Kasaliwal et al. found a power law

rule for the dependence of the dispersion of CNT

agglomerates on the specific energy input [14]. But

Kasaliwal et al. did not take into account the interfacial

energy of the components (CNT in Polycarbonate). In this

work, we take both the interfacial energy and processing

energy into account.

This paper is divided into several sections beginning

with the description of experimental processing of polymer

nanocomposites using extrusion. The next section presents

the descriptors for predicting the dispersion of nanocom-

posites under non-equilibrium processing conditions. In

particular, the definition of two key parameters that capture

the mixing energy is first presented, followed by

microstructure descriptor analysis including image analy-

sis, microstructure characterization, and key descriptor

identification. Correlations between processing and

microstructural descriptors are then established, and the

impacts of the processing descriptors on the microstruc-

tural dispersion are shown.

Materials and methods

Material

Monofunctional siloxanes were procured from Geleste Inc. and

used as received. The siloxanes purchased were octyldimethyl-

methoxysilane (ODMMS: CH3–(CH2)7–Si(CH3)2–O–CH3),

chloropropyldimethylethoxysilane. (CPDMES: Cl–C3H6–

Si(CH3)2–O–C2H5), and aminopropyldimethylethoxysilane

(APDEMS: NH2–C3H6–Si(CH3)2–O–C2H5). Due to the

monofunctionality of the silanes, a monolayer of silanes is

ensured. The colloidal silica had a primary particle size of

15 nm and was supplied in methyl ethyl ketone by Nissan

Inc. The trade name was MEK-ST. Matrix polymers were in

powder form. The polystyrene (PS) (grade number 339-341-

70) was purchased from Goodfellow Corporation. The PS

powder had a particle size of 30–300 lm, and a Tg around

100 �C. The polypropylene (PP) was tHC001A-B1 from

Borealis. The PP powder size was 200–600 lm and Tg is

around -5 �C. The poly(methyl methacrylate) (PMMA)

was purchased from Scientific Polymer Products, Inc. (cat-

alog number 037B). The powder size of the PMMA was

200–650 lm and Tg is around 98 �C.
The surface modification was according to Natarajan

et al. [15]. 50 ml tetrahydrofuran (THF) and 16 ml of the

silica nanoparticles in solvent were refluxed at 70 �C for

24 h under nitrogen atmosphere. The mixture was cooled

down to room temperature. Then the amount of THF was

reduced to 20 ml in a rotor evaporator in order to reduce

the amount of needed hexane. The mixture was precipi-

tated in 200 ml of hexane. The particles were then cen-

trifuged at 10,000 rpm for 10 min at 10 �C. After that, the
particles modified with ODMMS and CPDMES were

redispersed in ethanol, APDEMS-modified silica was

redispersed in THF. The nanoparticles in ethanol were then

mixed with the adequate amount of PP and PS polymer

powder to gain a particle content of 2 wt%. Note: the PP

and PS did not dissolve in the ethanol. The APDEMS-

modified silica in THF was either mixed with the adequate

amount of PP or precipitated out in water. The organic

solvent was evaporated and the water-particle suspension

was mixed with PS or PMMA resulting in 2 wt% particle

content. For PMMA, the ODMMS- and CPDMES-modi-

fied silica was also precipitated out by pouring the solution

in water. The ethanol was evaporated and the remaining

silica in water was mixed with an adequate amount of

PMMA. After evaporation of the water or ethanol, the

nanoparticle-polymer mixture was dried in a vacuum oven

for 12 h. The mixtures were then milled in a jet milling

machine in order to reduce the starting agglomerate size.

These mixtures were used for further extrusion.

The interfacial energy of the silane-modified silica and

the polymer matrix was reported elsewhere [15, 33–35] and

is given in Table 1. The surface energy was measured by

building a monolayer of the silanes on a silicon wafer and

measuring the contact angle with water, formamide, and

diiodomethane [15]. We assume here that the distribution

of the molecular weight and its effect on the polymer

interfacial energy can be neglected [36].

Composite synthesis

The extruder was from Randcastle Extrusion Systems, Inc.

single screw extruder (type RC-0500). The screw length was

342.9 mm, the screw diameter was 12.7 mm, and the

channel width was 9.8 mm. The inner diameter of the screw

increased from 0.56 to 11.4 mm from the main hopper to the

polymer output. The extruder die was disassembled in order

to reduce its influence on particle dispersion. The nanopar-

ticle-polymer powder mixture was extruded at 180 �C and at

different rotation speeds (20, 195 rpm for all the composites

and 100 rpm only for amino-modified Silica samples).

TEM and microtoming

To observe the dispersion of the nanoparticles in the

polymer matrix, the materials were embedded in an epoxy

matrix and slices of *50 nm were sectioned at room

temperature in an ultramicrotome using a diamond knife.

The sections were collected on a copper grid and imaged in

a JEOL-2010 transmission electron microscope (TEM).
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Thermo-gravimetric analysis

The particle content of the nanocomposites was determined

with thermo-gravimetric analysis (TGA). The samples

were first heated at 10 K/min up to 700 �C and then the

temperature was kept at 700 �C for 5 min.

Viscosity

The viscosity of the samples was measured in a parallel-

plate rheometer. The samples were pressed at 180 �C. The
sample size was 25 mm and the gap was set to 2 mm. The

shear rate was changed in the rotation mode at a temper-

ature of 180 �C for PP; 200, 210, 220 �C for PS; and 220,

230 �C for PMMA. For samples with high viscosity that

could not be measured at 180 �C, the samples were mea-

sured at higher temperature and the viscosity at 180 �C was

calculated according to the Arrhenius Eq. 1 [16, 37].

gðTÞ ¼ gðT0Þ � exp
DE
R

� 1

T
� 1

T0

� �� �
; ð1Þ

where R is the Avogadro constant and E the activation

energy.

Descriptor

Interfacial energy descriptors

The final dispersion state when extruding nanocomposites

depends on the deagglomeration and re-agglomeration of

the nanoparticles during processing. The dominant

enthalpic factor in dispersion was simulated by Starr et al.

[38]. The result shows the importance of the interaction

strength between the particle and polymer and the inter-

action strength between particles. Below a critical value

(when the particle-polymer interaction was weaker than the

particle–particle interaction), the particles agglomerated

abruptly. Therefore, Natarajan et al. [15] and Koshkava

et al. [35] used the ratio of the work of adhesion between

filler and polymer and the work of adhesion of filler to filler

(WPF

WFF
) to capture the contact angle of the filler on the

polymer. Stöckelhuber et al. [39] and Wang et al. [40] also

found that the stability of the initial dispersion after pro-

cessing and annealing is driven by the relative work of

adhesion. The contact angle can be calculated with Eq. 2

[41, 42].

cos h ¼
�1þ 2

ffiffiffiffiffiffiffiffiffi
cdPc

d
F

p
cF

þ 2

ffiffiffiffiffiffiffiffiffi
cpPc

p
F

p
cF

;
WPF

WFF

\1

1;
WPF

WFF

� 1

8>><
>>:

; ð2Þ

where cpP, c
d
P, c

p
F and cdF are the polar and dispersive com-

ponents of the polymer and the filler, respectively. cF is the
total filler interfacial energy, which is given by cF = cF-
p ? c

F
d [43], as Fowkes approximated that the polar and

dispersive components make additive contributions. This

expression assumes that the particles are the wetting

component. It must be noted that in this equation, the

contact angle h is truncated to 0 for the case WPF/WFF C 1.

In this case, Eq. 2 indicates that the particles can wet the

polymer better and are less likely to form agglomerates

[13]. In contrast, when WPF

WFF
\1 (h increases above 0�), the

particles are inclined to agglomerate.

Table 2 gives the results of WPF=WFF from Eqs. 1 and 2

for the respective polymers and fillers given in Table 1.

The only compatible material combinations (WPF/WFF -

C 1) in this work are octyl- and chloro-modified silica with

PS and PMMA. The PP combinations and the amino-

modified silica in PS and PMMA are not compatible (WPF/

WFF\ 1).

Processing descriptors

In order to develop microstructure/processing relation-

ships, the specific shear energy was evaluated.

The shear stress in the screw channel depth of an

extruder H(L) can be calculated according to the shear

stress in the space between two cylinders [44]. When the

channel depth H is changing along the extruder, it is

Table 1 Interfacial energies of

the used silane-modified silica

and the polymers

Interfacial energy (mJ/m2) Dispersive (mJ/m2) Polar (mJ/m2)

Filler

Octyl-mod silica [13] 31.00 28.00 3.00

Chloro-mod silica [13] 36.21 30.46 5.76

Amino-mod silica [13] 43.64 37.85 5.79

Polymer

Polypropylene [35] 29.8 29.8 0.01

Polystyrene [34] 42 41.2 0.8

Poly(methyl methacrylate) [34] 40.2 35.8 4.4
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dependent on the length of the screw L. The shear rate is

determined by Eq. 3 with the channel depth H(L), the

screw diameter d, and the screw speed N.

_c ¼ p d � 2HðLÞð ÞN
HðLÞ ð3Þ

The shear stress s (Eq. 4) can be calculated using the

viscosity gP of the polymer and the shear rate _c from

(Eq. 3).

s ¼ gP � _c ð4Þ

The viscosity of the materials was estimated with the

Cross law (Eq. 5) (gP;lim is the viscosity at infinite shear

rate, gP,0 is the viscosity at zero shear rate, and a is a fitting-
factor) and the Einstein equations (Eq. 6) for filled poly-

mers (f is the filler fraction, gF is the viscosity of the filled

polymer, and gP is the viscosity of the neat polymer) [37].

gP ¼ glim þ
ðgP;0 � gP;limÞ
1� a � _c2=3 ð5Þ

gF ¼ gP þ f � 2:5þ f � 21:42 ð6Þ

A number of finite difference method (FDM) or finite

element method (FEM) based models have been proposed

for analyzing the conveying and mixing process for single

screw extrusion [45–50]. These methods are mathematically

complex and computational costly. Lai [51] has proposed a

fast track algorithm where no partial differential equations

are included to simplify the analysis without losing much

accuracy. In Lai’s model, the processing energy consump-

tion in a circular segment with infinitesimal length along the

screw length direction, dw; is defined as

dw ¼ pDX
60

dFby; ð7Þ

where D is the screw diameter, X is the screw speed, and

dFby is the tangent component of the traction on the screw

barrel surface. With Eq. 7, the power consumed on an

infinitesimal area of the barrel surface can be obtained. By

integrating dw over the screw surface, the total power

consumption, w, is obtained. The total power consumption

is then divided by the throughput to synthesize the

descriptor,

Ec ¼
w

_qm
; ð8Þ

where _qm is the mass throughput in the processing. Note

that the unit of this descriptor Ec is J/s which indicates that

this descriptor represents the energy consumption on each

unit of composites during the processing. This term, Ec,

provides a simple way to represent the complicated pro-

cessing procedure and it is then taken as a processing

descriptor in our later discussions. The two descriptors

discussed thus far, WPF/WFF and Ec, represent the com-

patibilities of the constituents and the processing energy

consumption, respectively, will be used as the representa-

tions of the processing. The descriptor for the geometric

aspects of the composite is developed in ‘‘Microstructure

descriptors’’ section with the analysis of the microstructure.

Microstructure descriptors

In addition to the interfacial energy (WPF/WFF) and pro-

cessing descriptors (Ec) discussed in ‘‘Interfacial energy

descriptors’’ and ‘‘Processing descriptors’’, it is also

important to quantitatively describe the nanofiller disper-

sion (microstructure) of the nanocomposites. To obtain an

accurate and representative description of the microstruc-

ture, an image pre-processing method, statistical charac-

terization technique, and machine learning algorithm were

applied to TEM images of nanocomposites. At least, 10

TEM images with a magnification of 60,000 were taken

from one nanocomposite slice of 50 nm for each sample in

order to analyze the microstructure.

Niblack algorithm based TEM image binarization

Before statistical characterization of the microstructure, a

pre-processing step, image binarization, was applied to the

TEM images to identify the gray-scale pixels as either

nanoparticles (fillers) or polymer matrix. Typically, a glo-

bal threshold, T, determined by some statistical criterion, is

used as the decision boundary for this binary classification

problem [52–56]. For example, if the portion of the desired

fraction in the image is known (for example, the volume

fraction is prescribed for the statistical representative vol-

ume elements (RVE) [56]), a level can be selected such

that just the filler pixels are above the threshold. And if the

histogram of the gray-scale values is bimodal, where two

comparable intensity peaks are distinctly separated, the

threshold can be set at the minimum point in the valley

between the peaks [55]. These global threshold-based

techniques were originally proposed for recognizing tex-

ture from a gray-scale document page, in which case a

small portion of misclassification or noise does not influ-

ence the identification results. In our study of TEM images

Table 2 Descriptors describing the interfacial energy of the various

material combinations

Silica modification Polymer PP PS PMMA

Octyl-mod silica WPF/WFF 0.94 1.15 1.12

Chloro-mod silica WPF/WFF 0.84 1.04 1.05

Amino-mod silica WPF/WFF 0.78 0.95 0.96

The compatible combinations are given in italics
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of polymer nanocomposites with low volume fraction,

however, small areas of uneven background brightness,

especially shadows created by voids, wrinkles, or uneven

thickness can be misclassified into the incorrect phase and

result in significant error. To address this problem, instead

of using a global threshold method, local threshold algo-

rithms based on a sliding window were employed. Several

pixel-wise threshold algorithms [57] have been evaluated

on the TEM images of our polymer nanocomposites with

both small volume fraction (around 1 %) and small areas of

uneven brightness. The Niblack algorithm [58] was found

to perform the best among these algorithms. In the Niblack

algorithm, the pixel-wise threshold is computed as follows:

TNiblack ¼ mþ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i p

2
i

NP

� m2

s
; ð9Þ

where m is the local gray-scale mean of the pixel’s

neighbor area, i enumerates all the pixels in the neighbor

area (in the sliding window), pi is the gray-scale value of

pixels, and NP is the total number of the pixels in the

neighbor area chosen based on the area of uneven bright-

ness (k is an empirical constant that is set to -0.2 by the

authors [57, 58]). Figure 1 illustrates the comparison of

binarization results using the global and Niblack local

thresholding. In this example, the volume fraction in the

global thresholding algorithm is assigned the same value as

that obtained from Niblack algorithm for fair comparison.

It can be found that the dark matrix area (zone B) was

incorrectly recognized as a large cluster by the global

thresholding algorithm, resulting in the omission of the real

clusters in zone A. In contrast, using the Niblack algorithm,

the gray-scale image is well binarized and undesired

misidentifications can be minimized. As Niblack algorithm

is found to be a more accurate binarization algorithm to

process TEM images of polymer nanocomposites, this

binarization tool has been integrated in the open-source

online database for polymer nanocomposites, named

NanoMine [59].

Descriptor-based microstructural characterization

In the statistical characterization and design of heteroge-

neous material systems, three main categories of

microstructure characterization and representation approa-

ches have been proposed: (1) the physical descriptor-based

method [60–65], in which the material microstructure is

represented by physically meaningful descriptors; (2) the

correlation function-based approach, where the microstruc-

ture is expressed by an infinite-dimensional function [60, 66–

68]; and (3) the random field method for which the

microstructure is modeled by random fields [60, 69–71]. Xu

et al. [65] found that among these three approaches, the

descriptor-based approach is the most computationally effi-

cient without losing significant accuracy. Additionally, the

variables used in the latter two approaches lack physical

meaning, preventing insight into the morphology of the

microstructure and its impact on material response. Fur-

thermore, the infinite dimensionality of the correlation

function and random field-based approaches hinders further

design and optimization of the microstructure. Thus, the

descriptor-based characterization tool is integrated into

NanoMine [59] and descriptor-based representation

approach is adopted in this work.

In the descriptor-based design representation approach

for nanocomposites [56, 65], the descriptor set for

microstructure consists of 13 statistical descriptors (their

first 4 statistical moments are measured) and 3 deterministic

descriptors. In addition to these 55 descriptors, other

research includes one additional statistical descriptor, area

weight equivalent radius (raw) (the nearest center distance

(rncd) is also considered in their work, but it is already

included in our original set), when determining the impact of

the interfacial energy on dispersion [15]. In this paper, we

include this interfacial energy-related descriptor (its first 4

statistical moments) for a total of 59 descriptors, as shown in

Table 3. Although the dimension of microstructure repre-

sentation is significantly reduced by replacingmultiple TEM

images with a set of descriptors, the number of descriptors is

large and will be addressed in the next section.

Since the images studied from the TEM slices of

nanocomposites are not necessarily RVEs but are statistical

volume elements (SVEs) [74], a single TEM is not repre-

sentative. In order to obtain representative statistics for

each sample, an assembly step is applied after character-

izing TEM images individually. By assuming that all the

clusters have been fully captured within the TEM images,

and all the magnitudes of the nearest neighbor vectors are

small enough to ensure that a clusters’ nearest neighbor lies

in the same TEM image scale, the characterized statistics

from each single image are weight averaged.

Supervised learning-based significant descriptor

identification

We aim to build a predictive model between interfacial

descriptors (WPF/WFF), processing descriptors (Ec) and

microstructure descriptors to relate the impacts of pro-

cessing conditions on the microstructure. However, the

large number of potential microstructure descriptors limits

our ability to develop a useful model. Two challenges can

be identified: (1) Since the set of 59 descriptors are col-

lected from the studies on different aspects of microstruc-

ture for different material systems, are they all significant

in representing the microstructures in this work? (2) Is it

possible to simplify the model without losing too much
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accuracy to facilitate our intuitive understanding? These

challenges are addressed using a supervised learning-based

algorithm to identify the most significant descriptors

among the 59 candidates and correlating the significant set

of descriptors with the interfacial and processing descrip-

tors discussed in ‘‘Interfacial energy descriptors’’ and

‘‘Processing descriptors’’ [75]. In this identification pro-

cess, three commonly used correlation functions that

describe different aspects of the microstructures (two-point

correlation, surface correlation, and linear path correlation

functions) are selected, as we believe that these functions

are complementary to each other, and together they may be

able to fully represent the high-dimensional

microstructures. The significance of the 59 candidate

descriptors is determined by analyzing their average impact

on the first 250 points of the correlation functions (corre-

sponds to 342 nm) for all the samples using the RreliefF

algorithm [75]. The descriptors that influence the correla-

tion functions the most, receive a higher significance score

than the ones that have little impact the correlation function

(e.g., the higher the significance level is, the representative

the descriptor is). The learned significance levels by the

supervised learning algorithm are then normalized to make

the sum of the descriptors’ significances equal to one. The

top ten significant descriptors obtained from this analysis

and their corresponding significance levels are shown in

Fig. 1 The comparison of global and Niblack local thresholding

based binarizations (a) Original gray-scale TEM image (b) Binary

image processed using global thresholding (using the same

VF = 0.0173 as obtained from Niblack algorithm (c). Binary image

processed using Niblack algorithm

Table 3 Descriptors studied in the microstructure characterization, divided into three physically based categories

Descriptor Definition Type Number of moments

Category 1: composition VF Volume fraction Deterministic 1

Category 2: dispersion rncd Cluster’s nearest centroid distance Statistical 4

rnbd Cluster’s nearest boundary distance Statistical 4

Principle axis orientation angle [72] Statistical 4

Ifiller Surface area of filler phase Deterministic 1

N Number of clusters Deterministic 1

Local VF Local volume fraction of the voronoi cell [73] Statistical 4

Category 3: geometry rc Cluster’s Equivalent radius Statistical 4

rp Inscribed circle radius Statistical 4

raw Area weighted equivalent radius (raw = rc/A) Statistical 4

A Cluster area Statistical 4

dcmp Cluster’s compactness Statistical 4

drnd Cluster’s roundness Statistical 4

decc Cluster’s eccentricity Statistical 4

dasp Cluster’s aspect ratio Statistical 4

drect Cluster’s rectangularity Statistical 4

dttst Cluster’s tortuosity Statistical 4
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Table 4. The significant levels are used as the criteria to

select the representative descriptors for the microstructures

in this work.

In Table 4, none of the third and fourth moments of the

statistical descriptors is identified as one of the top 10

significant ones. Therefore, the supervised learning results

show that, for the composites we study, the third and fourth

statistical moments of the microstructural descriptors can

be neglected for representation of nanoparticle dispersion.

Also, according to Table 4, the three most significant

descriptors are selected, one from each of the predefined

categories (Table 3), to be correlated with the processing

energetics: composition ? VF, dispersion ? Ifiller (SUR-

FACE area of filler phase) and geometry ? raw1 (area

weighted equivalent radius ðraw ¼ rc=AÞ). In the previous

work of microstructure reconstruction [75], the significant

descriptors selected are treated sequentially because mul-

tiple single-objective optimizations applied sequentially

are more favorable than one multi-objective optimization.

However, in this case, there is no sequence among the

selected descriptors, since each descriptor represents a

separate and parallel aspect of the microstructure. Thus we

choose a model that considers the three descriptors

simultaneously.

Note that even though the three descriptors are selected

from three physically based categories, they are not nec-

essarily independent from each other. For instance, with

the same volume fraction, the larger the area weighted

equivalent radius (raw1), the lower the filler interphase area

(Ifiller). Considering these dependences between the

microstructure descriptors, any one of them must be

functionally expressed in terms of both the processing

descriptors, and the other microstructure descriptors (e.g.,

raw1 = g(Ec, WPF/WFF, Ifiller, VF)). With both the

microstructure and processing descriptors on the right side

of the expression, it is hard to intuitively understand how

the processing descriptors contribute to the dispersion.

To establish a simple expression that is easily inter-

preted, we introduce an intermediate descriptor, volume

fraction normalized filler surface area (�Ifiller ¼ Ifiller=VF) to

represent the compound effects of the three selected

microstructure descriptors so that only the processing

descriptors are on the right-hand side of the correlation. We

omit raw in this intermediate descriptor because raw1 has

highly linearly negative correlation with �Ifiller (the corre-

lation coefficient is -0.89). Once the correlation between

processing descriptors and �Ifiller is established, the relations
for raw can be easily derived. Working with the interme-

diate descriptor has two other advantages. First, it helps to

rule out the effect of different VFs of the constituents in the

samples from the processing-structure correlation. Our

model aims to demonstrate the impact of the processing

energy descriptors on the dispersion, regardless of the ratio

of constituents in the composites. Second, the intermediate

descriptor �Ifiller inherits the ability of the descriptor-based

representation in that its physical meaning is easy to

interpret. In the studied polymer nanocomposites where the

volume fractions are very similar, a larger �Ifiller indicates a

better dispersion in the microstructure. Considering the

advantages listed above, we chose �Ifiller as the single

descriptor to represent the dispersion of the microstructures

and correlate it with the processing and interfacial

descriptors (Ec and WPF/WFF) in the next section.

Results and discussion

The processing and interfacial descriptors, Ec and WPF/

WFF, and the microstructure descriptor �Ifiller are character-

ized from 17 samples with at least 10 images for each (249

images in total), following the steps described in ‘‘De-

scriptor’’ section. The results are presented in Table 5 and

analyzed in this section.

Recall that a larger value of �Ifiller indicates a better

dispersion. The materials with the best compatibility (e.g.,

highest values ofWPF/WFF) show the best dispersion (octyl-

modified silica and PS) (Fig. 2) as indicated by the larger

volume fraction normalized interface area. The dashed line

indicates the threshold of 1, beyond which materials have a

wetting angle of 0� and the particles wet the polymer.

The microstructure dispersion descriptor �Ifiller also

depends on the processing energy descriptor Ec (Fig. 3). In

Fig. 3, samples with the same type of polymer and surface

modification method are grouped together and marked with

the same symbol. Figure 3 implies that the dispersion of

the samples with same polymer and surface modification

could be improved by increasing the processing energy.

Note that Fig. 3 is plotted with a logarithmic scale, so

the processing energy, Ec, has a relatively smaller impact

on the more compatible composites (e.g., the composites

that have relatively greater WPF/WFF values), even the

slopes of each sample set seems very similar in Fig. 3. For

example, the octyl-modified silica with PS shows the best

compatibility with a WPF/WFF of 1.15. Those materials also

Table 4 Top 10 significant descriptors from Table 3 as identified by

supervised learning

Rank Descriptor Significance Rank Descriptor Significance

1 Ifiller 0.0505 6 A1 0.0360

2 raw1 0.0500 7 rc2 0.0345

3 VF 0.0500 8 N 0.0328

4 raw2 0.0432 9 rp1 0.0324

5 rc1 0.0370 10 Local VF1 0.0321

The subscripts following the descriptors are the order of their statis-

tical moments
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have the best dispersion quality, �Ifiller. But the influence of

the processing energy, Ec, on the octyl-modified silica with

PS is less pronounced, even though materials show a slight

increase with increasing compounding energy. Natarajan

et al. [15], who used solvent mixing, found a very abrupt

aggregation of nanoparticles when the compatibility of the

nanoparticles with the polymer matrix goes from compat-

ible (e.g., WPF/WFF C 1) to not compatible (e.g., WPF/

WFF\ 1). The results in this research show that the

aggregation of the nanoparticles with aWPF/WFF\ 1 is less

abrupt than it has been found by Natarajan et al. for solvent

mixed nanocomposites [15]. This effect of the more com-

patible composites is because the materials that are melt

processed do not reach equilibrium compared to the

materials that are produced with solvent mixing [15] and

also start out with larger agglomerates.

These results indicate that dispersion quality, �Ifiller, can

be correlated to both the material compatibility (WPF/WFF)

and the processing energy (Ec). The relationship between

these variables was further developed using data mining

techniques to provide a mathematical expression, which

could be used in further analyses and prediction schemes.

The results for the three types of polymer matrix are shown

in Fig. 4, where the R2 values indicate that �Ifiller is linearly

correlated with the combined energetic terms.

According to Fig. 4, the given linear regression model

fits the characterized dataset well for both the PP, PS, and

PMMA composites. This figure reveals that (1) nanopar-

ticles may be easier to disperse in PP by slightly increasing

the compatibility or the shear energy input and (2)

nanoparticles need more energy input or a better compat-

ibility to be well dispersed in PS and PMMA due to the

smaller slope. The difference between the slopes of the

regression models implies that some properties of the

polymer matrix type will have a large influence on the

dispersion. The same result has been found in [24], where

the influence of surface energies on the dispersion of CNT

in different polymer matrices was analyzed. PS did not

follow the general trend and the authors assume that the

stiff polymer backbone of PS leads to a worse dispersion

than expected from the surface energetics. Similarly, we

can suggest that PP allows a larger increase of dispersion

with increasing processing energies and polymer-particle

Table 5 Descriptor values of the composites samples

Polymer Particle surface

modification

WPF/WFF Ec(J/g) �Ifiller

PS Octyl 1.15 34.52 0.20

85.73 0.21

Chloro 1.04 33.18 0.15

85.66 0.17

Amino 0.95 33.28 0.12

104.34 0.12

85.76 0.12

PP Octyl 0.94 0.65 0.16

3.03 0.13

Chloro 0.84 0.58 0.07

3.53 0.17

Amino 0.78 0.65 0.09

2.16 0.12

3.08 0.12

PMMA Amino 0.96 103.10 0.11

964.16 0.13

410.92 0.12
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Ī fi
ll
e
r

Eγ

PP
PS
PMMA
W

PF
/W

FF
 = 1

Fig. 2 The impact of the filler-matrix compatibility descriptor (WPF/

WFF) on the microstructure dispersion (�Ifiller)
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Fig. 3 The impact of processing energy descriptor (Ec) on the

microstructure dispersion (�Ifiller) in log scale. The polymer types and

the surface modification methods that correspond to the data points

could be found in Table 5
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compatibility because of the flexible polymer backbone

and lack of side groups. PMMA is also a stiffer chain than

PP and has a similar slope as the PS.

In addition, as is discussed in ‘‘Introduction’’ section,

there are 9 factors that may influence the 6 processes

during deagglomeration in the extruder, but some of these

factors (c, d, g and i) were not considered because of

insufficient data. To consider the potential significance of

these factors that may be discovered in the future, we

include these factors (point c, d, g, and i) in our processing-

structure model by addition of a single polymer matrix-

dependent term, f(matrix), in the processing-structure cor-

relation. This matrix-dependent term provides the flexi-

bility for the regression model to be extended to take the

detailed effected of the unconsidered factors into account.

Based on the results in Fig. 4 and the comments above, a

general linear regression model is proposed as

�Ifiller ¼ f matrixð Þ sinh2ð2WPF=WFF � 1ÞlogðEc þ 1Þ þ C0;

ð10Þ

where the term f matrixð Þ represents the effect of the matrix

polymer and C0 is the expected volume fraction normalized

interphase area if no processing energy is applied (Ec = 0).

The results for Fig. 4 are shown in Fig. 5.

Based on the proposed model, a quantitative relationship

between the dispersion of the materials (expressed with �Ifiller),
the mixing conditions (expressed with processing energy Ec)

and interfacial energies of the components (WPF/WFF) have

been established. In the future, the expression of the term

f ðmatrixÞmay be studied in detail by applying similar analyses

across nanocompositeswith various types of polymermatrix or

by exploring similar experimental data viaNanoMine [59]. For

instance, the explicit inclusion of additional factors such as the

influence of the stiff polymer chain of the PS [24] (point d) or

the crystallinity (point h), might lead to more complicated

expressions in f(matrix), to account for the different polymers

[24, 32]. Also, as only the agglomerate size after mixing is

studied in thiswork, the agglomerate size before and during the

compounding, which indicates how easy it is to break-up the

agglomerates, can be considered. Furthermore, the polymer

matrix changesduring the compoundingprocess by insertionof

mechanical and thermal energy or chemical reactions like

branching. This change may influence the polymer properties,

such as molecular weight distribution, viscosity, or surface

energy. Additionally, the temperature dependence of surface

energy may be another factor to explore. Other factors (point c

and d) that may influence the infiltration of the polymer would

be also considered.

Summary

In the processing-structure–property paradigm of advanced

materials development, the microstructure plays a signifi-

cant role in determining the material properties. In polymer

nanocomposites, it is essential to predict and control the

dispersion of the nanofiller. This prediction requires a

thorough understanding of the effects of interfacial energy

and processing conditions on the nanoparticle dispersion.

This paper represents a significant step toward gaining such

knowledge. Targeted experiments were performed on a

set of nanocomposites composed of three different poly-

mer matrices and 3 functionalizations of nanoparticles,

processed under various mixing energies. The resulting
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Fig. 4 Regression model of the influence of interfacial energetics and

processing conditions on the normalized interface of the

nanocomposites
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Fig. 5 Regression of both polymer matrices within one model with

the help of a matrix-dependent term f matrixð Þ: Here f(PP), f(PS), and
f(PMMA) are set as 15.120, 1.0, and 0.759, respectively, to account

for the difference of the regression slopes in Fig. 4
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compounds had different interfacial energies and disper-

sions, which were quantified. Dispersions were analyzed by

binarization of TEM images using pixel-wise neighbor-

hood-dependent Niblack thresholding algorithms, and the

dispersion was statistically captured using physically

meaningful descriptors. Supervised learning revealed that

the cluster surface area is the most significant descriptor

representing the dispersion of nanoparticles in a polymer

matrix. The interfacial energy was described by the ratio of

the work of adhesion of filler to polymer to the work of

adhesion of filler to itself (WPF/WFF), which also represents

the compatibility of the filler-matrix combination. The

mixing energy input, Ec, was taken as the processing

descriptor. This coordinated set of data shows that the

dispersion is strongly influenced by the interfacial com-

patibility (WPF/WFF) of particle and matrix. The larger the

work of adhesion of filler to polymer and the smaller the

work of adhesion of filler to itself, the better the dispersion

of the resulting nanocomposites. Processing also plays an

important role for the dispersion of nanoparticles where

dispersion is improved with increasing input of mixing

energy. An empirical quantitative relationship was devel-

oped expressing the dispersion descriptor as a function of

the processing descriptor (mixing energy) and the interfa-

cial energy descriptor. To generalize the expression, an

additional term f(matrix), was included to represent the

influence of the inherent polymer chain properties such as

chain stiffness and crystallinity which are not considered in

this work. This paper provides a basis for the prediction of

nanocomposite process-structure–property relationships

and the possibility to simulate and design nanocomposites.
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11. Hanemann T, Szabó DV (2010) Polymer-nanoparticle composites:

from synthesis to modern applications. Materials. 3:3468–3517
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influence of matrix viscosity on MWCNT dispersion and elec-

trical properties in different thermoplastic nanocomposites.

Polymer 53:495–504
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